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This paper develops a theoretical analysis to determine the force level attained 

in a cylindrical metal tube when the tube is fragmenting or splitting and rolling 

on a rigid die. The tube is treated as a thin, rigid-perfectly plastic cylindrical 

shell which fractures when a critical level of maximum strain is attained. The die 

has a semi-toroidal shape in order to expand the tube radially and to bend it meri- 

dianally, thus leading to fragmentation, i.e., fractures running in two perpendicu- 

lar directions. It is shown that in the fragmentation regime the meridianally run- 

ning cracks advance rapidly at first and then may become arrested. It is also shown 

that localized high bending strains develop and lead to transverse fracture. The 

energy absorbed during the process is evaluated through a numerical procedure which 

considers successive configurations of the deforming tube. The effect of contact 

friction on the energy absorbed is considered and found to be significant. 
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Nomenclature 

The tube mean radius and thickness are A and T, respectively. All dimensionles: 

length parameters are normalized with respect to the shell parameter G. 
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A)&?, dimensionless tube mean radius 

see eq. (2.5) 
dimensionless displacement of the tube 
see eq. (12) 
die contact force per unit circumference 

5 - coordinate of the plastic hinge 

dimensionless tube half thickness 
Heaviside unit step function of s 

dimensionless petal length, 

lower limit of integrals, see eq. (1.5) 

M/ooT2, dimensionless bending moment 

bending moment per unit length 

Nx/croT, dimensionless meridianal force 

meridianal force per unit length 
Ne/ooT, dimensionless circumferential force 

circumferential force per unit length 

dimensionless length of plastic region, 

contact pressure 

Q4WoT2, dimensionless shearing force 

shearing force per unit length 

dimensionless die radius 

dimensionless modified die radius 

.?h = T/G, dimensionless tube thickness 

dimensionless radial displacement of middle surface 

dimensionless radial displacement of inner surface 
dimensionless radial velocity 

radial velocity 

d-D9 
z? 

dimensionless tube axial velocity 

dimensional position coordinate 

dimensionless length projection on tube axis 
dimensionless projection of petal on tube axis 

Dirac delta function of s 
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average circumferential strain 
circumferential strain rate 
x/G, dimensionless position coordinate measured from the plastic 
hinge in the shell 
dimensionless curvature 
dimensionless curvature rate 

dimensional curvature rate 
arbitrary positive multipliers 
friction coefficient 
angle, see eq. (26) 
dimensionless position coordinate measured from the petal tip 

compressive stress in the undeformed portion of the tube. Prime indicates 
that the effect of axial force on the yield surface has been considered. 
material flow stress in tension or compression 
dimensionless time parameter 
slope angle 
function defining flow surface 
die angle 
dimensionless angular velocity 

Subscripts 

C refer to location at crack tip or petal root 

h refer to location at plastic hinge 

t refer to location at petal tip 

0 initial condition, except for o 
0 
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Introduction 

A method proposed for the absorption of kinetic energy is the process of frag- 

mentation of metal tubing, A metal circular tube is forced over a die causing 

circumferential expansion and meridianal bending of the tube as shown in figures 1 (a) 

and l(b).Due to the limited ductility of the material,cracks develop along meri- 

dianal lines so that a number of petals are formed at the end of the tube. In the 

fragmenting regime these petals grow and then break off due to the large bending 

strains developed. The petal growth and breaking process then repeats. After a few 

petals have broken off,the process becomes irregular so that at a given time the 

petals have attained different stages of development. Energy is absorbed essen- 

tially by plastic flow of the tubing material and by contact friction. The energy 

absorbed by the fracture process is small in comparison with that absorbed by 

plastic flow and friction. 

The purpose of this paper is to develop a theoretical analysis to determine the 

force level in the tube and whether or not the petals Kill break off. A quasi- 

static process is assumed,i.e., inertia terms are neglected in the equations of 

motion. This means that the analysis is appropriate only when the maximum kinetic 

energy associated with the defonnation of the tube is small in comparison with the 

total energy absorbed and the velocities are small in comparison with the elastic 

wave propagation speed, 

McGehee [ 113 has conducted experiments on the fragmentation of 2024-T3 

aluminum alloy tubing. 

% umbers in brackets refer to references listed at the end of the paper. 



II Analysis of Petal Growth 

Formulation of the Problem 

The theoretical analysis of the growth of petals or cracks is based on seven 

assumptions. These assumptions follow. 

2 At a given instant all petals have the same configuration. This assumption is appro- 

priate if one wishes to determine the force in the tube due to deformation of one petal 

or the average force in the tube. The theoretical peak tube stresses found from the 

following theoretical analysis occur only before the irregular process develops. 

2 The propagation of meridianal cracks is governed by a condition of critical radial 

displacement at the crack tips; hence, the average circumferential strain along a circle 

passing through the meridianal crack tips is an empirical constant. 

c The loading and deformation of the unsplit portion of the tube is axisymmetric. This 

assumption follows from a provided a sufficiently large number, say six or more, petals 

form. 

d The assumptions of the theory of thin shells apply to the unsplit portion of the tube 

This is probably the least accurate assumption made, since the tube thickness to radius 

ratios employed in [ I] are not sufficiently small. However, without this assumption 

an analysis would be virtually impossible. 

e The tube is homogeneous and is made of a rigid-perfectly plastic material which obeys 

Tresca or maximum shear stress yield condition and associated flow rule. This assumption 

is reasonable provided the plastic strains are large in comparison with the elastic strai 

at yielding and the material has negligible work hardening and anisotropy. 

f Geometry changes are small enough so that equations of equilibrium and compatibility o 

the unsplit portion of the tube are those of a cylindrical shell. 

$ Coulomb friction occurs at all points Of contact. 

In addition, the analysis requires two a priori conditions. These follow. 

h Contact between the tube material and the die occurs only at the tips of the formed 
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petals. 

& The current meridianal curvature of the petals was produced when that point 

currentiy in the petal was part of the plastically deforming shell. The petals are 

assumed to be rigid,i.e.,have unloaded from a plastic state. 

Figure 2(a) shows the cross section of the tube CHI with a petal TC at its end. 

Contact with the die occurs at point T'. The- region CHI behaves as a semi infinite 

plastic cylindrical shell subjected to axisymmetric transverse shear and bending moment 

at C. For a development of the plastic analysis of such a shell refer to the Appendix. 

Figure 2(b) shaws the free body diagram of the petal and tube. 

The dimensionless lengt&?ppearing in the analysis are normalized with respect 

to the shell parameter 6?. The dimensionless stress resultants nr, ne, q, and m 

are defined in the Appendix and in the Nomenclature. 5 is a dimensionless position 

coordinate measured from the petal tip. The lengths 1 -3/G, p.= %fi, and 

fz= m+p, (1) 

shown in figure 2(a) all change with time. The dimensionless radial displacement u, 

the slope angle 'p, and the dimensionless meridianal curvature x are functions of 

the position coordinate 5 and time. The subscripts t, c, and h refer to loca- 

tions T, C, and H, respectively. 

Let u = u(<,'t),where z increases monotonically with the time. Since the 

material properties are time independent, any variable which increases monotoni- 

cally with time may replace 7. From assumption b 

u(C,T) = uc = asc, a constant (2) 

where sC is the average circumferential strain at 5 = & . 

From differentiating (2) 

$p,T)ck + $?,-ddC = 0 

or 



cp (Q) = - 2 (“,z) = 2 (E,T) s (3 

The slope angle at a given material point in the plastic region is the sum 

of the initial slope angle (PO(E) and the additional slope developed by plastic 

flow during the crack growth process. 

Thus 

(4 

As is developed in the Appendix, the dimensionless velocity v, angular velocity 

w, and curvature rate G depend on the dimensionless position coordinate r) measure1 

from the plastic hinge and an arbitrary multiplier. At a given instant $E;r) is pro 

portional to o(q) where q=g-5. Also,$$(<,~) is in the same proportion to v(q). 

Then it follows that 

Now let -C s C . The solutions show that 8 increases monotonically with time; 

hence,this step is admissible. Substitute (5) and (3) into (b), and let <= 4 

to obtain 

e 
or g(‘)- e] j,(s)& 

0 VIP(S)1 
(6 

From the relationship 
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(7) 

one finds an integral expression for xc 

(8) 

Since the petals remain rigid, the curvature of the petals is 

x(-E) = x,(E) (9) 

Into (6) and (8) are substituted expressions for the spatial distributions of 

the dimensionless radial velocity, angular velocity, and curvature rate in a rigid- 

plastic shell subjected toaxisymmetric bending moment and shear force at its end. In the 

equations which follow the approximate expressions for v, w, and k(equations (83), 

(84), and (85), respectively, of the Appendix) are used in place of the exact ex- 

pressions derived in the Appendix. This produces some simplification at the ex- 

pense of only slight errors. Since the variable p is always positive, one may omit 

the Heaviside function as a factor in v[p(s)] 0 One then obtains 

e 
4p > = (p,(J) + (1 - f(s>*Hk(s)-elds 

0 

$0 
c 

f(s)=gb)*H[g(s) Jlds 
0 

8 
x,(C) -X0(t) + I f(s)6[g(s) - e]ds 

0 " 

+$lF J: f(s)*H[g(s) - c]ds 

(10) 

(11) 

5 



where 

%b>'H(s> 
f(s) = 

P(S) + ~~bb3)]2 

(12) 

The definite integrals having the Heaviside step function and the Dirac delta 

function as factors of the integrands are evaluated by the following formulas: 

a<b 

b 

fbd*H[g(x) - cl& 
a 

r 

I 

b 

f(x)dx, c < da) 
3 

J fbh, g(a) 2 c < g(b) 
l&c) 

0 , c ' K(b) 

O J c > da) 

1 
b 

f(x)= 6[g(x) - cldx 
a 

= I f[9-1(c)]~ 
dg I 

,ida> ( c < g(b) 
PC 

7 
where g-' is the inverse of the function g, i.e. if y = g(x), then x = g -i(Y> l 

Equations (10) and (11) become 

cp,(J> = cp,w + (1 - ;fiJ) f’ f(s)ds 

8* 
c 

f(s)-ds)ds 
c* 

03) 
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c 

f(s)ds 

4" 

where,with p, the initial value of p, the lower limit 1" satisfies 

t” = 0 

c* = g-l(c) 

4-z PO 

-3 ) PO 

04) 

(Ed 

The E- 4 diagram of figure 3 aids the understanding of equations (13), (a), and 

(15). The line OT represents the c-coordinate of the petal tip, OA that of the crack 

tip, and HOI?%%A the plastic hinge in the shell as 8 increases from zero. The 

region to the left of OA is the petal. That between OA and HOHJ^kSHA is the plastic 

region in the shell, and that to the right of H"HFHsHA is rigid. Lengths shown in 

the diagram are 

011' = TC = C , TH = g(C), CH = g(e) - 4 = p(e) 

Of = s, TSHS = g(s), BHs = g(s) - d > C 

OT* = J", 9 St T H = &*) = TC = E 

OH0 = OT" = p. = go 

A vertical line in the diagram represents states through which a material point 

must pass. If the crack tips have not reached the point Co, then the material 

point currently at the crack tip was plastic at the time when the crack began to grow. 

In this case plastic deformation at the material point occurs during the time interval 

from 0 to C . Thus,the lower limit of the integral is 8" = 0. After the crack tips 

have passed point Co to point C, the material point currently at C was initially rigid. 

It underwent no plastic deformation until the plastic hinge reached that point. Thus, 
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the lower limit of the integrals must be the crack length at the instant the point 

currently at C became plastic. In the diagram this length is 4" = OT", found by 

dropping a vertical line from C to fl and then drawing the horizontal line T*H". 

Since the equation of the line HOH*HSH is F= g(J) or 4 = g-l(E), then 

c" = g-l(a), The shape of curve H0H?3% shown is typical for many computed cases. 

As it is shown in the Append&the dimensionless length of the plastic region 

depends on the ratio of the applied bending moment to applied shearing focus. This 

ratio depends on the instanteous geometry and rate of change of geometry of the petal. 

The following shows how to find the instantaneous configuration. 

From the condition that the petal is rigid one finds the slope angle cp(5,c) at 

any point in the petal to be 

cp(E,q = 

The tip slope angle 

of the petal center 

4 
cp,(“) + Xc(g)d 5 

5 

qt(C), tip radial displacement ut(C) and the projection z,(e) 

line 6? of figure 2(a)) on the tube axis are 

‘Pt = ‘PC + I xc(s)ds 
0 

c =u + Ut c sin [cp k,J)l d E 
0 

cos[~(E,~>l d 5 

(17) 

08) 

(19) 

Since a numerical technique will eventually be used to obtain solutions, it is more 

convenient to put equations (17), (18), and (19) in derivative forms rather than 

integral forms. Taking the derivative of 'Pt with respect to 8 and substituting 

(13) and (4) for 'p, a& xc results in 

-- .-._ ..-.  - .  .  ._ -m.-.- .  .  .  .  .  .  --- .m,.-w-,.-m. -.-.. . I  I  I I  I  I I  I  11.1 .  ,111 -. .  



d’Pt 
37 - [1+ (20) 

By taking the derivative of ut and at with respect to 8 and noting that for a 

rigid petal 

one finds 

d”t dt 
de = sincpc * zt dC (21) 

dzt d 'Pt dC = cos 'PC - (ut - UC> dC (22) 

Let the projection of s (figure 2(a)) on a radial line be ~~'(8). Then, provided 

there is neither clearance nor interference between the tube and die entrance guide 

and the dimensionless die radius R is constant, the die angle \k must satisfy 

or 

Ut ' - R(l - cos $) 

\lr = 2 arcsin 

From geometry utl depends on u t and (Pt. 

(23 ) 

ut’=% + h(l-cos 'Pt) (24) 

9 
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The ratio of shearing force to bending moment at the crack tip depends on the geometr: 

of the petal and die and the friction angle (figure 2(b)).This ratio becomes 

9, 2b = m 
C 

cos (v - cpc> 

= Tit + h sin Qcos Y + (ut - uc - h cos qt) sin v (25) 

where 

V = $ + tan -l cr (26) 

Finally, one obtains another expression relating b and p from equations (80) and 

(81) of the Appendix with q = p. 

Fourteen variables (4, p, q, qc, xc, f, .!?", (Pi, ut, zt, ui, 9, v, and b) and 

thirteen functional relationships [equations (l), (12) through (ls), and (20) 

through (271 have been introduced. The constant parameters of the problem are 

R, h, uc, and K. The functions cp,(<) and x,(c) specify the initial state. The 

seven variables p, Xc, f, V, ut', $, and b may be eliminated by algebraic processes, 

leaving six coupled functional relationships among the remaining variables. 

Solution 

It is most convenient to treat C as the independent variable. A numerical 

step-by-step method of solution, beginning at L= 0 and advancing by small steps 

At, has been developed. The method employs the trapezoid rule of integration and 

reiteration of each step until successive values of all variables agree within a 

specified percentage error. It is desirable to decrease the size of the step AC 

as the integration proceeds because as p becomes small f becomes large. In the 
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numerical procedure an initial value of 68 is chosen, and AC is halved whenever 

the value of f increases by more than a specified percentage over one step. As p 

approaches zero, the behavior becomes singular; therefore, the procedure must be 

terminated when p becomes small. Then an asymptotic solution employing a variable 

other than C as the independent variable is used. This asymptotic method is 

described later. 

The method was programed in the Fortran language for an IBM 7070 computer. 

After a few trials, it was found that satisfactory results were obtained by choosing 

A-!? = 0.1 initially, halving A& when f changed by more than 25'%, and reiterating to 

an accuracy of 0.3%. The procedure was terminated when either p became less than 

.03 or AC became less than .OOOs. The functions chosen for 'p. and x0 are the dimen- 

sionless slope and curvature resulting.from the application of a transverse shear 

force at the end of the tube to open it up by a radial amount uC. 

Asymptotic Method for Small p 

From the differentiation of (13) and (4) with respect to C and the condition 

that p is small one finds 

WC z d(f), ‘PC 
7iT a- +p 

dXC d% 
dC Ym 

In general, where the asymptotic solution applies, c~,(8) and x,(C) vanish. I.& this 

be the case. Now with cp, as the independent variable, 

(28) 
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(29) 

By changing the independent variable from 8 to 9, in (20), (21),and (22) and 

employing (29) one finds 

*t 
r ::l 

C 

d=t N 
yq - Ut - UC 

(30) 

(31) 

(32) 

For small p equation (27) reduces to 

b ZP (33) 

One must now solve the eight coupled functional relationships (23) through (26) 

and (30) through (33) for eight dependent variables 'Pt, ut, zt, p, b, ut', $, 

and v as functions of the independent variable 9,. Again a numerical step-by- 

step procedure employing the trapezoid integration rule and reiteration is used. 

The initial data for this computation is, of course, taken from the final step of 

the previous computation. A step of Ag, = 0.05 was used. The procedure is repeated 

until p becomes zero. Both 4 and xc may be calculated afterward from (28) and 

(29). Equation (29) shows that the cracks are arrested when p reaches zero, i.e., 

the crack tips and plastic hinges have the same E-coordinate and the shearing force 

at the petal bases vanishes. 

12 



III Petal Bending with Stationary Cracks 

After the crack has been arrested, the plastic hinge moves away from the crack 

tip into the petal. Figure 4(a) shows a cross section of the petal with the plastic 

hinge at point H, the crack tip being at point C. It is assumed that the petal 

behaves as a plastic curved beam subjected to tip loading. The bending moment is 

a maximum at 5 = g, the location of the plastic hinge. The shear force vanishes 

at 5 = g; hence,from figure k(b) 

For a constant friction coefficient 

* -1. 

(34) 

(35) 

A change in the slope angle b(Ph at the plastic hinge is the sum of a rigid 

body rotation Apt of the region between the hinge and the petal tip and a change 

-nAg due to the movement Ag of plastic hinge along the petal with curvature x . 

In derivative form this condition becomes 

Other geometrical relationships are 

(36) 

(37) 

(38) 
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d% -se. 
dmh 

dg sin cp 
*h h (39) 

where y is the axial projection of line TH of figure b(a) and u,- is the total 

radial displacement at the plastic hinge. The die contact 

the radial displacement at the petal tip by equations (23) 

(24) into (23), differentiating with respect to 'ph, using 

rearranging, one finds 

dCPt= R sin $ 

&h y + h sin (Pt l 

Then from (36) and (40) 

-AL +r1- R sin \lr 
*h y + h sin cp 1 . 

t 

angle $ is related to 

and (24). Now substituting 

the result of (351, and 

(40) 

(41) 

In (41) x is the curvature of the petal just ahead of the moving hinge. Its value 

is obtained from the solution of the crack growth problem. 

The system of six differential equations (35) and (37) through (41) can be 

solved for the six variables $, (Pt, g, ut, y, and uh as functions of (ph. The 

trapezoid rule of numerical integration and reiteration of each step to a desired 

accuracy have been used to obtain step-by-step numerical solutions. The initial 

data used for these calculations is the terminal data taken from the solution of the 

crack growth problem. 
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IV Load-Displacement Behavior 

Since it has been assumed that contact between the tube material and the die 

occurs only at the petal tips, the axial force per unit circumference in the rigid 

tube depends only on the magnitude of the die contact force F per unit circum- 

ference of undeformed tube and the angle v. The compressive stress in the tube is 

CT F - = - sin v . 
=0 UOT 

(42) 

For the crack propogation problem one finds F by eliminating mc from the 

expressions 

4mc = 1 - p2 - + 6 p3 (43) 

and 

“C 
m [(zt + h sin 'pt) cos v + Cut - uc - h cos 9,) sin VI (44) 

or by eliminating q, from the expressions 

2qc = p + f 6 P2 (45) 

and 

9, = 
F&P 

u. T2 
co.9 (v - cp,). (46) 

After the crack has been arrested, the condition that 4mh - 1 yields the result 

FGI 0.25 
a0 T2 (y + h sin cp t) cos v + (u -u - h cos cp,) sin v 

. (47) 
t n 
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The meridianal membrane stress at the petal root is 

n xc 
=-c&-sin (v -(PC) . 

0 
(48) 

The yield condition used so far is independent of this stress. Such a condition is 

valid provided lnxcj is small in comparison with one. For the present problem 

this is not always the case; therefore, a correction for this effect is needed. To 

obtain an approximate correction, assume that the effect of n X on the projection 

of the yield surface on the m, ne plane is to change only the size but not the 

shape of the figure. The plastic analysis of such a cylindrical shell is given in 

the Appendix. The intersection of the m-axis and the yield surface is given by 

4m - 1 - nx2 

hence, the size factor for the yield surface is assumed to be 1 - nx2. For such 

a yield surface m and q of equations (69) and (70) are replaced by m/(1 - n x2) 
and q/(1 - nx2), respectively. To employ such a yield surface in the crack 

propagation analysis, replace mc in equation (43) by m,/(l - nxc 2> and q, in 

equation (45’) by qc/(l - nxc 2>. The above approximate yield surface is expected 

to give results very close to those obtained from the exact Tresca yield surface 

because the effect of 'nxc' on the yield surface becomes appreciable only when 

the generalized stress profile approaches the m-axis, where the exact and approx- 

imate yield surfaces coincide. To apply the approximate correction for axial 

force to the stationary crack problem,mtiiply the numerator on the right hand side 

of equation (47) by (1 - nxh2) where 

F n xh =-- . 
0 

(49) 

16 



I 

The compressive stress in the tube found by employing the axial force dependent 

yield surface is denoted by 01. 

Let D denote the dimensionless displacement of the undeformed part of the 

tube relative to the die and take D = 0 when the tip enters the curved part of 

the die. It is assumed that there is neither clearance nor interference between 

the tube and the die,entrance and that meridianal lines on the tube middle surface 

do not change in length. From geometry of the crack growth problem 

D-C-z t -h sincpt+R sin*. (50) 

Forthe problem of petal bending with stationary cracks the derivative of D with 

respect to the independent variable is 

dD d% 
*h 

= R .cos % + (ut - uh - h cos cp,) 7 . 
h 

(51) 

The rigid tube displacement relative to the die is then found by numerical 

integration. 

17 



V A Theoretical Analysis of the Rolling Process 

For small t/?3 ratios the a priori condition & does not hold. In this 

case the petals formed are likely to roll up to a radius close to the die radius. 

This phenomenon is called rolling. In the following analysis it is assumed that, 

when rolling occurs, the flow of material in the deforming region is steady and 

that the curvature of the formed petal corresponds to the die radius. The 

satisfaction of both of these conditions places some restrictions upon the die 

configuration near the entrance. This restriction will be discussed later. Figure 5 

shows the petals bent to the die radius. The plastic analysis of cylindrical shells 

of the Appendix applies to the -deforming portion of the tube. The tube material 

flows steadily along a path, entering the deforming region at r) = 0 and leaving 

at r)=q c, the coordinate at the crack tip or petal base. Here 17 is the 

dimensionless coordirate of a point of the deforming tube measured in a frame of 

reference fixed to the die. The point at which plastic deformation commences is the 

origin. When axial compression is neglected, the average axial velocity over the 

cross section is independent of r) O The time T required for a material point 

entering the deforming region at T) = 0 to reach the position rl is proportional 

to q o Then 

where w is the dimensionless velocity of the tube relative to the die. The 

dimensionless radial displacement u of a point at q is found by integrating 

the radial velocity v with respect to time. The dependence of the radial 

velocity on the coordinate 77 is given by equation (77) or (83) in the Appendix. 

For steady flow A must be independent of T-J . The expression for the radial 

displacement becomes 

18 



or 

u (q) --+ 
5 

rl 
v ('l) drl . 

0 

From equations (77) of the Appendix and (53) 

u (q) = X’ (2$ q2 + +- q3 * +- q44, H h) 

(53) 

(54) 

where X' = A/w. Expressions for the slope and the curvature are found by 

differentiation with respect to T) . Thus 

-n b-l) = X’ (1 + q + + q2) H (‘-d . (56) 

Two conditions are maintained at rl ='qc. They are that the petal curvature 

corresponds to the die radius and that the radial displacement is that which is 

required to maintain the crack. These two conditions are expressed by 

32 
= X' (1 + ?lc + 7 l qc2) = +-y (57) 

U 
C 

= X’ (4 qc2 + + qc3 + + qc4) = a& 
c - 

(53) 

l-b 
and Xl are found by solving equations (57) and (58) simultaneously. 

The slope of both the die and the petal must be the same at point C if the 

petal is to match the die exactly. This cannot be the case if the die radius is 

constant. If the die radius is modified along the arc 53 as shown in Figure 6, 

19 



the condition of matching slopes is satisfied. *For slopes satisfying cp, cc 1 

uc = 8 (Rl - h) (PC2 

from which 

Rl-h = 2 ucxc 

R -h (PC2 l 

(59) 

The numerical value of (Rl - h)/(R - h) lies between 1.0 and 1.2; therefore, 

dies by which steady state formation of petals of constant curvature may be achieved 

are almost constant radius dies. 

Figure 7 shows a free body diagram of the petal which may carry an arbitrary 

distribution of contact force p' and a friction force ~5. If there is no friction, 

the tangential force must vanish. For the frictionless die 

NC = - MC RF sin (9 - 'PC) dcp = - ~-h . 

In terms of dimensionless variables 

t n 3-m 
C c R-h (60) 

where m 
C 

is found from equation (69) of the Appendix, with q =PJ 
C* 

The stress 

in the undeformed tube is 

L-=-n 9, 

u ccosql +t 
C 

sin cp 
C 

0 
(61) 

where q c is found from equation (70) of the Appendix. With some algebraic 
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manipulation equation (61) reduces to 

u -=I 
u t t -+$O+f R 

0 

tl, + +- qc2) cc  l (62) 

For practical values of tic the factor in parentheses in (62) has a value in the 

range 1.0 to 1.33. A limitation of the foregoing analysis is that sC must 

satisfy ac < ) t/(R - h). 

For EC >+ t/(R - h)a portion of the unsplit but deformed tube has contact with 

the die. Again shell theory is used to determine the stress in the tube. The 

resulting expression for the stress in the tube is 

u -= E (5 c++- R:h l 

0 

The details of this calculation are omitted here for brevity. 

When a small coefficient of friction (about .2 or less) between the die and 

petal exists, equation (60) must be replaced by 

(63) 

t n z-m R 
C c R-h -'R-h . (&I 

Equation(64) is not an exact expression,but contains only the first order terms in b. 

The derivation of equation (a) is omitted for brevity. Figure 8 shows the results 

of calculations. 
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VI Theoretical Results and Comparison with Experiment 

Geometric results of a sample calculation are shown in Figure 9. The data 

a/k = 1.75, t/R = .6, and ec = .02 are typical values for the tube fragmenta- 

tion tests of reference [2] using 2024 - T3 aluminum alloy as the tubing 

material. The value for ec was obtained from measurements of deformed specimens 

of these tests. The friction coefficient is assumed to vanish corresponding to a 

well lubricated die. Figure 10 shows how the E-coordinate of the plastic hinge g 

and that of the crack tip 8 change as the tube is pushed over the die. Figure 10 

also shows the load-displacement behavior of the rigid tube. In Figures 9 and 10 the 

dotted lines at the left show interpolations to the known initial data for D = 0. 

The interpolation line for (ph vs. D in Figure 9 begins at the value of D for 

which g reaches a maximum as would be expected. The area under the a/o vs. D 
0 

curve in Figure 10 represents the energy absorbed during the fragmentation process. 

The maximum ordinate of the cl/Jo vs. D curve indicates the maximum compressive 

stress reached in the undeformed part ofthe tube. Buckling of the tube as a short 

column may occur if Q8po becomes too large. For the buckling problem it is 

necessary to treat the tube material as an elastic-work hardening material. The 

buckling problem is not considered in this paper. 

Figures 11(a) and 11(b) show the petal shapes at the time when the crack becomes 

arrested and when the motion of the plastic hinge in the petal changes its direction, 

These figures show the highly non-uniform distribution of bending in the petals 

for this case. Transverse fracture of the petal is very likely when the configura- 

tion of Figure 11(b) is reached due to the large bending strains developed. 

Figure 12 shows the effect of the ratio t/R on the load-displacement 

behavior of tubes pushed over a die. For the three cases shown, the constant data 

is a/R = 1.75, ac = .02, and F = 0. For the cases t/R = .3 and t/R = .46, 

condition b (that contact between the tube material and the die occurs only at 
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the tips of the formed petals) is valid only during the early stages of petal growth. 

The load-displacement behavior for these cases is shown only up to the displacement for 

which condition & holds. At larger displacements contact occurs at both the petal 

tip and over a circle in the unsplit portion of the tube. Continued displacement of 

the tube would, due to the new contact force, cause an increase of the shearing 

force on the unsplit portion of the shell. This in turn causes an increase of 

length of the plastic region in the unsplit portion of the tube. It is conjectured 

that then the length of the plastic region in the unsplit portion of the tube would 

reach a relative maximum and then decrease due to rapid running of the meridianal 

cracks. A theoretical analysis of this deformation would be too complicated to carry 

out; however, reasonable estimates of the force level in the undeformed tube may be 

obtained by supposing that the length of plastic region remains constant, i.e., by 

using the results for steady state rolling. 

Figure 13 shows how a change in the ratio a/R affects the load-displacement 

behavior for t/R = .46, cc = .02, and CL = 0. Figures a and 15 show how changing 

the friction coefficient from 0 to 0.2 affects the load-displacement behavior 

when s 
C 

= .02, a/R = 1.75, and t/R = .A6 or t/R = .6. Note the large effect of 

friction when t/R = .6. 

Results of tests of tubes of 202h -T3 aluminum alloy have been communicated 

to the author [2]. Figure 16 shows the stress-strain behavior in compression for 

this material and that for a rigid perfectly plastic idealization with a flow stress 

of 60 ksi. The dotted lines of Figure 17 show the measured stress levels plotted 

as a function of t/(R - h) for various values of a/(R - h). These curves were 

plotted from an empirical expression given in 12]by taking the flow stress o 
0 

as 60,000 psi. The slight increase of u'b0 with increasing a/(R - h) is in 

agreement with the theoretical results of Figure 13. Curve 1 of Figure 17 shows 
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theoretical stress levels for steady state rolling and curve 2 shows that for 

fragmentation. For .35 < t/(R - h) < .7 agreement between the theoretical 

fragmentation stress and the measured stress is good, For larger t/(R - h) the 

theory predicts a stress in the undeformed part of the tube which is much less than 

the measured values. 

Some reasons for the difference are given in the following: 

1. For large t/(R - h) the theoretical analysis shows that the contact 

force at the petal tips becomes large, so that the edges would be crushed. The 

energy absorbed by local plastic flow and the change in petal shape due to this 

crushing have not been considered in the theoretical analysis. 

2. The cross section of the petals is not rectangular in shape but is a sector 

of an annulus which has a greater plastic limit moment than the assumed rectangular 

section. 

3. The dies were machined to have a slight interference with the inside of the 

tubular specimens along the die entrance guide. Considerable friction may occur along 

this contact surface. 

4. The assumption that the length of the middle surface does not change is 

poorest for the case of large t/k; hence, the calculated values of D are too 

small. 
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VII Conclusions 

1. In the fragmentation regine meridianally running cracks advance rapidly when the 

shearing force at the petal roots is large and become arrested when this shear- 

ing force vanishes. 

2. Large localized bending strains develop; therefore, points where transverse 

fracture is likely to occur may be determined. 

3. The direct stress in the tube increases with increasing t/R in both the frag- 

mentation and the rolling regimes. 

4. The direct stress in the tube increases slightly with increasing a/R. 

5. The effect of friction on the force level in the undeformed part of the tube is 

significant. 

6. The compressive stress in the undeformed part of the tube may reach peak values 

sufficiently large to cause column buckling of the tube unless the tube is 

supported laterally to prevent such buckling. 

7. For large t/R the energy absorbed by crushing at the petal tips may be signi- 

ficant. 
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APPENDIX Plastic Analysis of a Cylindrical Shell 

A semi-infinite cylindrical shell is subjected to the sxisymmetric edge bendi 

moment M and shearing force Q as shown in Figure 18(a). The coordinate x is 

measured from the point where the shearing force vanishes. The following dimension 

less notation is introduced: 

m = M/eoT2 , 9' Q fi/ooT2 

ne = N@,T 9 n X = N,/uoT 

r,=x/dz * 

In terms of the dimensionless quantities, the equations of equilibrium are 

dm 
-c-q 

dq 

dqzn 
dT e 

d”X -=o . 
drl 

When nx = 0, m> 0, ne) $-, the Tresca yield condition [Figure 18(f)] for a 

cylindrical shell is (see reference [13]) 

(6.5) 

(66) 

(67) 

where 

@ = 4m * (2n - 1)2 - 1. 8 
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I 

he solution to (65), (66), and (67) is 

(69) 

I 
(70) 

“e =fr+31+-+12 . (71) 

Figures 18(b), 18(c), and 18(d) show the variations of m, q, and n8 with q. hy 

eliminating r~ from equation (69) and (70) one obtains the first quadrant of the 

yield curve in load space shown in Figure 18(e). 
. 

For a cylindrical shell the generalized strain rates are the curvature rate K 
. 

and the circumferential strain rate c . These generalized strain rates are related 

to the radial velocity V by 

. V e=-. A 

(72) 

The flow rule of the theory of plasticity states that the generalized strain rate 

vector points in the direction of the outward normal to the yield surface at a 

regular point. This means that 

. 

K= x w 

2 (74) 
uOT 

am 

. x a+ 
==T an, (75) 

where 1 > 0. 
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Ekpression (68) is substituted into (74) and (75) and x is eliminated to 1 

obtain a differential equation for V. 

XL= 
d?’ 

1 v. 2n8-1 ' 

Let v = V/dAT be the dimensionless radial velocity, 0 be the dimensionless 
. 

angular velocity and X =G i be the dimensionless curvature rate. The solution 

to (76) is 

v = A(rj+ 311 2 
+ -+ q3) H 6-j) (77) 

(78) 1 
. do a=-= A&)+ (l+ 

d? -+-q) H h-j)] (79) 

where A > 0, H (q) is the Heaviside step function and 6(q) is the Dirac delta 

function. 

Equation (71) shows that the variation of s with TJ is almost linear. To 

obtain suitable approximations by polynomials of a lower order, assume that the 

variation of ne with r] is linear, equations (65) and (66) hold, and that 

ns = - where 2 m = a and n8 =I where m-0. The resulting approximations are 

4m = 1-7~~ -+ a,i3 (80) 

2q=q++nq2 

“8 -l++-C?. 

(81) 

(82) 
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I An approximate expression for the velocity field is found by observing the 

imilarity of the exact expressions for v and 2q and applying this similarity to 

he approximate expression. Thus the approximate velocity field is 

I 

v = A (q + $5q2, H h> 

o - A .(l+$&) H (q) 

I . 
x m A [6(q) + $6 H (rl)] 

When nx is not zero the yield surface of a cylindrical shell. of Tresca materi 

ected to axisymmetric loading has the form 

(83) 

(84) 

(85) 

.a1 

I a, Cm, %, nx) =O 

An approximate expression for +, , suitable for the region ne > 0, m > 0, 

“X 
< 0 but small, is 

bm 

t 

2n 
*1 =1 

8 

- "x 2+ 1- 
"x2 

@l is obtained by replacing m and n8 @by m 
"e 

in the expression and 
1 x2 -n l-p2 

respectively. The projection of *1 = 0 on the plane IQ = -0.5 is shown in figure 18(f), 

The plastic analysis involves the satifaction of equationa (65),(66), (67), and (86). 

The solution is given by expressions (69), (TO), and (71) with m, q, and nQ replaced 

by m , 9 , and "0 

l-nx2 l-"x2 l-r&2' 
respectively, Fig. 18 (e) shows such a yield 

curve in load space for nx = -.5. For the approximate yield surface, the normality 

condition yields the transverse velocity field given by equations (77), (78), and 



(7'9) with no changes. 

The derivations and results of this Appendix were guided by [4] . 
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(b) 

Fig. 1 (a) Fragmenting tube; (b) Die 
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Fig. 2 (a> Cross section of tube, petal 
(b) Free body diagram , and die during crack propagation; 
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Fig. 3 5 - E diagram 
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Fig. 4 (a> 
Free 

(a) 

INGE 

b) 
Cross section of tube, petal, and die during petal bending; 
body diagram 

b) 
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Fig. 5 Cross section of tube, petal, and die during rolling 
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Fig. 6 Modified die profile 

Fig. 7 Pressure and frictional loading on the petal during rolling 
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Fig. 8 Tube stress during rolling as a function of t/(R-h) 
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Fig. 9 Geometry dependence on dimensionless tube displacement D: t&=.6, a/R = 
1.75, ~~ = .02, and w = 0. 
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Fig. 10 Crack growth and hinge movement as functions of tube dimensionless dis- 
placement: t/R = e6, a/R = 1.75, cc = .02, and p = 0. 
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(a) 

Fig. 11 Computed petal shapes: t/k = .6, a/R = 1.75, &C = .02, and p = 0. 
(a) When the cracks are arrested; (b) When the plastic hinges stop moving 
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Fig. 12 Effect of t/R on the tube stress-displacement behavior: a/R = 1.75, 
E 

C 
= .02, and p = 0 
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D 
FIG. I3 

Fig. 13 Effect of a/k on tube stress-tube displacement behavior: t/R - .46, 
E 

C 
= .02, and CL = 0 
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Fig. l-4 

/ 
I I I I 

0 0.5 1.0 1.5 2.0 
FIG. I4 

Effect of friction on tube stress-tube displacement behavior: t/R = .46, 
a/R = 1.75, and cc = .02 
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FIG. 15 

Fig. 15 Effect of friction on tube stress-tube displacement behavior: t/R = .6, 
a/B = 1.75, andcc = .02. 
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Fig. 16 

80 

STRESS 
ksi 40 

/O I 

0 2 

.05 .I0 
STRAIN 
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Fig. 17 Comparison of theoretical and test results 
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(d) 
Fig. 18 (a) Shell and loading, (b) dimensionless bending moment, (c) dimen- 

sionless shearing force, (d) d imensionless 
(e) yield condition in load space, 

circumferential tension, 
(f) Tresca yield condition for a 

cylindrical shell. 
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